Highly Conducting Doped Metal–Phthalocyanines bound to a Polymer

Hirofusa Shirai,* Seigo Higaki, Kenji Hanabusa, Nobumasa Hojo, and Okikazu Hirabaru†

Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda-shi, 386 Japan

Doping of films formed by covalently binding metal–2,9,16,23-tetracarboxyphthalocyanines to poly(2-vinyl-pyridine–CO–styrene) yields highly conducting materials (σ_{RT} 10⁻⁴—10¹ ohm⁻¹ cm⁻¹).

Highly conducting doped phthalocyanines have been reported, and for the one dimensional composition, Ni-pcI_{1.0} (pc = phthalocyanine) metallic behaviour has been demonstrated.¹ Further investigations with stacked and bridge-stacked phthalocyanines {[(M-pc)_n, M = Si, Ge, and Sn]² and [(M-pcF)_n, M = Al and Ga]³} have shown that the presence of a central atom-oxygen and central atom-halogen bridge gives high conductivities on doping with iodine. Previously, we have prepared and studied the chemistry of some soluble metal-phthalocyanine derivatives with peripheral functional groups and the polymers derived from them.⁴⁻⁷ Quite recently, we have synthesized metal-2,9,16,23-tetracarboxyphthalocyanines (M-tapc) ($M = Fe^{III}$, Co^{II}, Ni^{II}, and Cu^{II}) covalent-ly bound to poly(2- or 4-vinylpyridine-CO-styrene) [P2 (or 4) VP-CO-St] (1) by Friedel-Crafts reaction of the styrene units of the copolymer with M-tapc tetra-acid chlorides.^{6,7} We show here that the films can be doped with various gases to yield highly conducting materials.

[†] Present address: Department of Applied Physics, Miyakono-jo Technical College, Miyakono-jo-shi, 885 Japan.

(1); m = 0.50, p = ca. 0.48 - 0.39, q = ca. 0.02 - 0.11.

The bound phthalocyanines M-tapc-P2VP-CO-St [M = Fe¹¹¹, Co¹¹, Ni¹¹, and Cu¹¹] were prepared and purified as before.^{6,7} The copolymer films containing M-tapc were made by spreading a 20% methanolic solution on a polyethylene plate and heating to dryness for ca. 10 h at ca. 40 °C. The films were peeled off the plate, put into test samples (1.5 \times 1.5 cm²), and dried further at room temperature for 12 h under vacuum. X-Ray diffraction data showed that the M-pc rings were randomly oriented in the films. The doping of the samples was carried out at room temperature. The films were exposed to various gases including iodine, using grease-free vacuum line techniques until constant weight was attained (2 days). The samples thus modified with different dopants were stored over silica gel in a desiccator. The conductivities of these films were measured using a standard technique described previously which employs gold electrodes.5

The room temperature conductivity data for P2VP-CO-St as well as the M-tapc bound to the copolymer are listed in Table 1. The conductivities of the M-tapc copolymer-bound films were 10⁶—10⁹ greater than those of the parent copolymer alone. As shown in Table 1, further increases in electrical conductivity for the M-tapc-P2VP-CO-St films resulted from their doping. Doped M-tapc-P2VP-CO-St films have σ_{RT} values of *ca*. 10⁻⁵—10¹ ohm⁻¹ cm⁻¹. In the absence of M-tapc, P2VP-CO-St-I₂ had a conductivity of less than *ca*. 10⁻⁹— 10⁻¹⁰ ohm⁻¹ cm⁻¹. With increasing metal-phthalocyanine concentration the conductivities rose steeply by 2—3 orders of magnitude. This suggests that the conductive pathway involves significant π - π overlap between phthalocyanine rings.

The Raman spectrum of the iodinated Ni¹¹-tapc-P2VP-CO-St film shows strong scattering attributable to I_3^- (ca. 106 -108 cm⁻¹), and the e.s.r. spectrum at 25 °C contains a sharp signal at g = 2.000. These data indicate that there are free electrons in the iodine-doped Ni¹¹-tapc polymer. The conductive mechanism of the iodine-doped Ni¹¹-tapc polymer may be explained as follows. The free electrons are formed by charge transfer from a phthalocyanine ring or a pyridine group in the parent polymer to a di-iodine molecule to give I_3^- . Charge transport can be envisaged by a process in which 'free electrons' (or 'holes') move between isoenergetic configurations.⁸

The doped films are stable in air and could be heated to ca. 80 °C with little effect on their conductive properties. The

Table 1. Conductivities ^a for doped M-tapc-P2VI	'-CO-St⁰ hli	ms.
---	--------------	-----

	Amount of M		
Μ	(mol%)	Dopant	σ_{RT} (ohm ⁻¹ cm ⁻¹) ^c
_		HCld	10-12
		I ₂ d,e	10-10 f
g	1.8	·	10 ⁻¹⁰ f
g	3.6		10 ⁻⁹ f
g	10.3		10 ⁻⁸ f
g	3.6	HCld	ca. 10^{-1} -10^{-2}
g	10.3	HCla	<i>ca.</i> 10^{0} — 10^{-1}
g	3.6	H ₂ SO ₄ d	10-3
g	10.3	H ₂ SO ₄ ^d	10-2
g	1.8	I2d,e	10 ⁻⁶ f
g	3.6	I ₂ d,e	10 ⁻⁴ f
g	10.3	I ₂ ^d ,e	10 ⁻³ f
Con	7.2		10 ⁻⁹ f
Co ^{II}	7.2	HCld	10 ⁻³
NiII	10.9		10 ⁻⁸ f
NiII	10.9	HCld	10-2
Ni ¹¹	10.9	$\mathbf{I_{2}^{d,e}}$	10 ⁻³ f
h	9.0	-	10 ⁻⁷ t
h	9.0	HCld	10-2
h	7.3	H ₂ SO ₄ ^d	$ca. 10^{-2} - 10^{-4}$
h	7.3	SO ₃ d	ca. 10^{1} – 10^{0} f
h	7.3	I ₂ d,e	$ca. 10^{\circ} - 10^{-2}$ f
h	7.3	BF ₃ -phenol ¹	$ca. 10^{\circ} - 10^{-1}$
h	7.3	CuBr ₂ i	$ca. 10^{-2} - 10^{-3}$
h	7.3	TCNE	ca. 10^{-4} — 10^{-5}
h	7.3	TCNQ ⁱ	$ca. 10^{-4} - 10^{-5}$

^a A three point terminal electrode (ref. 8) was used at room temperature. ^b 2VP/St = 1.13, 2VP/St was assumed to be identical with the monomer molar ratio. ^c The values reported are averages of five repeated measurements on each sample. ^d Solid-vapour reaction under vacuum. ^e Films were doped to constant weight. ^f 10⁻⁵ Torr. ^g M = Fe^{III}. ^h M = Cu^{II}. ⁱ Reaction in heptane slurry. TCNE = Tetracyanoethylene and TCNQ = tetracyanoquinodimethane.

bridge-stacked metallophthalocyanines are powders.^{2,3} The films obtained here may be practically useful in various electronic devices, because of the flexibility and easy processing of the films.

Received, 29th March 1983; Com. 413

References

- 1 J. L. Petersen, C. F. Schramm, D. R. Stozakovic, B. M. Hoffman, and T. J. Marks, J. Am. Chem. Soc., 1977, 99, 286.
- 2 K. F. Schoch, Jr., B. R. Kundalkar, and T. J. Marks, J. Am. Chem. Soc., 1979, 101, 7071; T. J. Marks, K. F. Schoch, Jr., and B. R. Kundalkar, Synth. Met., 1979-1980, 1, 337.
- 3 P. M. Kuznesof and K. J. Wynne, J. Chem. Soc., Chem. Commun., 1980, 121; R. S. Nohr, P. M. Kuznesof, K. J. Wynne, M. E. Kenney, and P. J. Siebenman, J. Am. Chem. Soc., 1981, 103, 4371.
- 4 H. Shirai, S. Yagi, A. Suzuki, and N. Hojo, Makromol. Chem., 1977, 178, 1889; H. Shirai, K. Kobayashi, Y. Takemae, and N. Hojo, J. Polym. Sci., Polym. Lett. Ed., 1979, 17, 343; H. Shirai, A. Maruyama, K. Kobayashi, and N. Hojo, *ibid.*, p. 661; H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo, *ibid.*, p. 661; H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo, *ibid.*, Maruyama, M. Konishi, and N. Hojo, *ibid.*, p. 1003; H. Shirai, A. Ishimoto, N. Kamiya, K. Hanabusa, K. Ohki, and N. Hojo, *ibid.*, 1981, 182, 2429.
- 5 H. Shirai, K. Kobayashi, Y. Takemae, A. Suzuki, O. Hirabaru, and N. Hojo, *Makromol. Chem.*, 1979, **180**, 2073.
- 6 H. Shirai, S. Higaki, K. Hanabusa, and N. Hojo, J. Polym. Sci., Polym. Lett. Ed., in the press.
- 7 S. Higaki, K. Hanabusa, H. Shirai, and N. Hojo. Makromol. Chem., in the press.
- 8 T. E. Phillips, R. P. Scaringe, B. M. Hoffman, and J. A. Ibers, J. Am. Chem. Soc., 1980, 102, 3435.